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Abstract—As it is known, the general equation for the coefficient of heat (or mass) transfer between a
rough wall and a turbulent fluid flow can be derived with the aid of general dimensional and similarity
considerations supplemented with some additional physical arguments. The equation is specified here
for the case of a wall covered with two-dimensional roughness in the form of widely spaced parallel
ridges perpendicular to the stream direction. The constant coefficients of the derived equation are
approximately estimated from the available data on mean temperature or concentration profiles in wall
turbulent flows over two-dimensional roughness. The final results of the calculations agree satisfactorily
with all of the experimental data on turbulent heat and mass transfer in pipes and channels with regularly
repeated parallel ronghness ridges and in boundary layers on plates with two-dimensional roughness
of the same form.
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equation for gy in the neighbourhood

of the wall;

constant in the universal logarithmic
velocity profile equation;

constants in the equation for the function
B(Pr) in a smooth-wall flow;

constants in the equation for the function
B(Pr, hy)in a flow along a wall with
closely spaced roughness elements;
constants in the equation for the function
B(Pr,h,)in a flow along a wall with
two-dimensional roughness;

Owen and Thomson’s parameter
describing temperature or concentration
variation within the roughness sublayer;
constant in the velocity profile equation;
skin friction coefficient;

dimensionless heat- or mass-transfer
coeficients (i.e. thermal or diffusion
Stanton numbers) based on maximum
and bulk values, respectively;

specific heat capacity at constant
pressure (to be replaced by unity in case
of mass transfer);

constant in equations for S(Pr, h4);

pipe diameter;

mean height of roughness elements;
roughness parameter;

height of the equivalent sand roughness;
“threshold value” of h, ;

heat or mass flux;
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k, exponent in equation (7) for 8(Pr, h.);

L, typical vertical size of the flow;

Nu, Nu,, C,RePrand ¢, RePr, Nusselt numbers;

p, distance between two-dimensional
roughness ridges;

Pe, RePr, Péclet number;

Pr, thermal or diffusion Prandtl number;

Re, Uy L/v or UyD/v, Reynolds number;

Re,, Uix/v;

Re., hou.fv;

u, (tw/p)'7?, friction velocity;

U, mean velocity;

X, distance from leading edge of a plate in
a boundary layer flow;

¥, coordinate measured normal to a wall.

Greek symbols

o, coefficient at the logarithmic term in
equations (3);

B, Bs, constant terms in equations (3);

B, B+alnh.;

¥, exponent in the equation for the function
eg{y) in the neighbourhood of a wall with
two-dimensional roughness;

83, energy-loss thickness of a boundary
layer;

Oy, viscous sublayer thickness;

A,, enthalpy thickness;

AT (8.,—61)/(8,,—6,), correction factor for
transition from ¢, to Cy;

&1, Ext» eddy (thermal or mass) diffusivity and
eddy viscosity;

#, dimensionless distance from a wall for
outer region of a flow;

71, h/L, dimensionless roughness height;
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0, mean temperature or mean
concentration;

., Jw/cppus, heat flux temperature (or mass
flux concentration);

v, kinematic viscosity;

0, density;

g1,02,..., dimensionless parameters describing
shape and area distribution of roughness
elements;

T, shear stress;

@, 01, universal functions;

ba molecular diffusivity for heat or mass
transfer.

Subscripts

b, bulk quantities;

¢, calculated quantities;

m, measured quantities;

r, quantities for a completely rough wall;

S, quantities for a smooth wall;

w, wall quantities;

+, dimensionless quantities;

i, maximum or minimum quantities at
y=L.

INTRODUCTION

THE FIRST investigations of heat and mass transfer
between a rough wall and turbulent fluid flow were
made more than fifty years ago. During all these years
plenty of valuable experimental and theoretical works
have been devoted to the problem. The references to
many of them can be found in recent monograph [1]
and in other works cited in the present paper. Never-
theless it is impossible to say at present that the
problem of a turbulent heat and mass transfer at rough
walls is completely solved.

The present paper is devoted to derivation of corre-
lations for turbulent heat and mass transfer at a wall
covered with two-dimensional roughness. Namely, we
consider roughness in the form of regularly repeated
parallel ridge-like protrusions perpendicular to the
stream direction. The analysis is developed in the
frames of the general approach to the study of heat
and mass transfer in wall flows at high enough Reynolds
and Péclet numbers proposed by Fortier [2,3] and
the present authors [4-6]. The approach is essentially
similar to Millikan’s [7] derivation of a skin-friction
law for smooth- and rough-wall turbulent pipe and
channel flows. It is based primarily on general dimen-
stonal and similarity arguments having a clear physical
meaning.

Let us assume that the rough wall is uniform, while
the turbulent flow is steady and parallel (ie. all mean
fluid dynamic values depend only on the distance y
from the wall, but not on the time ¢ and coordinates
x and z). The wall temperature (or wall concentration
of the transported substance} 8, is assumed to be
constant and different from the temperature (or con-
centration) of the fluid. It is also assumed that
v/x = Pr 2 1, ie. we shall not consider heat transfer
in rough-wall flows of liquid metal (since at present

there are no reliable experimental data on such heat
transfer).

Dimensional considerations imply that in a wall layer
of the flow (ie. at h < y « L, where & is a protrusion
height and L is a typical vertical size of the flow, e.g.
pipe radius, channel halfwidth, or boundary-layer
thickness), the mean temperature profilet will satisfy
the temperature wall law of the form

0,—0(y) = 0.0(y+, Pr.hs, 0, 02,...) (N

where 8.= j,/c,pu.is the so-called heat-flux tempera-
ture, v+ = yus/v, hs = hu,/v and ¢, 05, ..., are dimen-
sionless parameters characterizing the shape of rough-
ness elements, their distribution over the wall surface
and (in cases when not all of them are identical) the
scatter of their dimensions and shapes. On the other
hand, at y » v/u, and y > &, i.e. in the core of the tube
or channel flow or in the outer part of the boundary-
layer flow, the temperature defect law is valid, if the
numbers Re= U, L/v and Pe= U,L/y = RePr are
high enough. This law has the form

0(y)— 01 = Beepu(n) @

where 8; = #(L) and n = y/L. Let us also assume that
the Reynolds and Péclet numbers are so high that
there is an overlap layer in which both the laws (1)
and (2) apply simultaneously. Then the comparison of
the two laws implies that both functions ¢(y.) and
@1{n) must be logarithmic in the overlap layer:

Oy+, Prohy, 01,00, . J=alnys +B(Pr.hi,01,62,...),
()= —alng+p, 3

(cf. Monin and Yaglom [8], Sections 5.5 and 5.7). If
we now substitute (3) into (1) and (2) and then add the
results, we shall obtain an expression for 6,,—8 lead-
ing to the heat {or mass}) transfer law of the form

B {Cf/z)uz
= In[Re(c,/2) ] + B(Pr, hvr 01,02, ) 4 Br

where ¢, = j:v/c,,pUx(Gw—Ol) is the heat- (or mass-)
transfer coefficient (Stanton number) and ¢, = 2(uy/U, )
is the skin-friction coefficient. When the values of Re
and ¢ are given, the corresponding ¢, can be evaluated
with the aid of equation (4), if the values of the coef-
ficients a, § and §, are known.

The numerical coefficients « and §§, do not depend
on the wall parameters, ie. they are the same for all
wall flows of the same type. The available data were
discussed in [5,6] where the following recommen-
dations were given: o = 2.12 in all the cases, §; > 0.5
for circular pipe and plane channel flows and §, ~ 2.35
for boundary-layer flows. The same values « and §;
are used in the present paper. Thus for the possibility

4

1T We shall henceforth talk mostly about heat transfer and
temperature field 8(y). However, all subsequent arguments
can be applied to mass transfer if the meaning of 8, j,, and ¥
is changed accordingly and it is assumed that ¢, = 1.

The values of 6 = #(y) in a wall-roughness sublayer of
the thickness of the order of h are meant as area-mean
values (i.e. mean values over the plane y = const). Similar
meaning has the value j,, of the wall flux.
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to use equation (4) the value of § = S(Pr, h4, 01, 62,...)
must be estimated. This problem is more complicated
than the estimation of @ and #; and it will be considered
in detail in the following section.

2. HEAT- AND MASS-TRANSFER LAW FOR
TURBULENT FLOWS ALONG A WALL COVERED
WITH TWO-DIMENSIONAL ROUGHNESS

In the paper [5] devoted to heat and mass transfer
in smooth-wall turbulent flows the equation

B(Pry=125Pr*31+2.12In Pr—53

was recommended for § = B(Pr)inacase whenh, = 0.
This equation was derived by a simplified analysis of
the behaviour of 6(y) within the viscous sublayer
and by the treatment of all the available data on mean
temperature profiles in smooth-wall turbulent flows.
Moreover the term 2.121n Pr was included only to fit
the data for liquid metal flows (Pr « 1). Therefore in [6]
a simpler smooth-wall equation for §(Pr) was recom-
mended at Pr 2 1 (i.e. for all the cases with the exception
of heat transfer in rough-wall flows of liquid metals),
namely

B(Pr) = B, = 12.5Pr*¥3 —6. &)

Equation (5) fits all the smooth-wall data at Pr > 0.6
with the same accuracy as the equation for B(Pr)
recommended in [5]. However, no smooth-wall equa-
tion for B can be applied to a rough-wall case that
requires a special study.

Numerous data on turbulent heat and mass transfer
at a wall with closely spaced three-dimensional rough-
ness are analysed in [6]. It has been found that all of
the data treated in [6] can be described with a satis-
factory accuracy (which is somewhat less than that
achieved in [5] for heat and mass transfer at smooth
walls) by equation (4) where § = B(Pr, h,) is given by
the single equation for all the considered types of
roughness. In other words the results of [6] imply that
the dependence of f on the parameters oy,0,,...,
describing specific features of the wall geometry, turns
to be so weak, that it can be neglected in the first
approximation when only the walls covered with
closely spaced roughness elements are considered. For
dynamically completely rough walls (i.e. at sufficiently
large h.,)the following equation is recommended in [6]:

B(Pr,hy) = B, = 0.55hY2(Pr*? —02)
—~212Inkhs +95. (6)

The general form of the equation was found by the
consideration similar to those used in {5]. For transi-
tional flows along dynamically slightly rough walls the
linear interpolation between 8,(Pr,h.) and B,(Pr) is
suggested in [6].

The applicability of the same function B(Pr,h.)
independent of any additional parameters o4, 62,...,
to many types of roughness implies that the single
heat-transfer law can be used in the first approximation
for a great variety of different rough walls. It is clear,
however, that the law cannot be quite universal, ie. it
cannot be applicable to all existing types of roughness.
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In particular it has already been pointed out in [6]
that some of the regular deviations of the experimental
points from the theoretical curves in the figures of this
paper may be explained in some cases by the inaccuracy
of the equation for f as applied to specific types of
roughness. Such a situation is quite probable, for
example, in the case of Nunner’s experiments on heat
transfer in pipes with the walls roughened by relatively
sparse circumferential rings (heat-transfer data for such
pipes showed especially poor agreement with theor-
etical equations recommended in [6]). It has also been
pointed out in [6] that Webb er al’s [10] data on
heat transfer in pipes with repeated-rib roughness
noticeably differ from the results following from (6).
Let us also mention recent results of Garratt and Hicks
[11] who treated numerous data on heat (Pr = 0.71)
and moisture (Pr = 0.62) transfer into the air from a
large number of artificial and natural rough surfaces.
They plotted a summary graph of the special dimen-
sionless parameter B~' (expressed through f and
roughness parameter ho) vs dimensionless combination
Re.= houy/v simply related to h. = hu./v (the depen-
dence of B! on Pr was not considered in [11] since
the data were rather crude and two values of Pr used
differed but slightly). According to [11] the parameter
B™! {and hence B) by no means can be presented at
fixed Pr as a single-valued function of Re. (ie. of h.).
Namely, at large Re. the values of B~! for surfaces
with two-dimensional roughness (i.e. regularly repeated
parallel rows of protrusions) essentially differ from B!
in case of more irregular and dense three-dimensional
roughness. All this shows, that in cases of “two-
dimensional roughness” we cannot use equation (6)
that was suggested in [6] for a wall with closely spaced
roughness elements. Hence the problem of the deter-
mination of § for a wall with two-dimensional rough-
ness requires a special study.

It is natural to expect that the sparse two-dimen-
sional roughness in the form of repeated parallel ridges
leads to weaker deterioration of turbulent transfer in
the gaps between protrusions, than closely spaced
three-dimensional roughness with the same value of h..
It is suggested in [6] that the thermal eddy diffusivity
ex(y) in the gaps between closely spaced three-dimen-
sional protrusions can be described by the equation
en = dgvhi?y3 where aj does not depend on h.,. and
y+. If this suggestion is correct, then it is reasonable
to assume that in cases of two-dimensional roughness
whose ridges do not contact with one another (but let
us say, follow each other at a prescribed distance p),
the thermal eddy diffusivity ex{y) near the wall in the
gaps between the ridges, averaged over the whole area
of these gaps, may be described by the equation
eu(y) = aivhi7y} where 0 <y < 3/2. (Let us remind
that the equation of the form ex(y) = an vy withy =0
describes the smooth-wall case where there are no
protrusions at all) It can easily be seen that if
em(y) ~ en(y) ~ h% y3 then the thickness 8, of the
viscous sublayer is given by the equation &, ~ (v/uJh¥{?
where J, is determined by the usual condition that
Re, = 6, U(8,)/v is of the order of unity and, clearly,
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0 < /3 < 1/2. By repeating all the arguments of [6]
(and, in particular, by assuming again that above the
level y = 4, the variation of the mean temperature is
approximately proportional to the variation of the
mean velocity), but by using the new values of the eddy
diffusivity g4(y) and of the thickness J,, we arrive at
the relation of the form

B(Pr, hy) = fiH (PP +b3)—alnh, +C ()

where b} > 0, and k = /3 (i.e. 0 < k < 1/2). If we now
substitute this result into (4) we find that

o (Cf/z)l/2
T aln L+ bR (PP ) +C + By

This equation for ¢, will be compared later with the
existing experimental data on heat and mass transfer
at completely rough walls covered with two-dimen-
sional roughness.

The numerical parameters k, b7, b3 and C’ entering
into equations (7) and (8) theoretically may depend
upon the shape and distribution of roughness ridges,
i.e. on the parameters g4, 02, ... . In particular, it seems
natural to expect that the exponent k would depend
on the ratio p/h describing the density of roughness
ridges and would decrease with increase of p/h. The
results of the next section show, however, that for
many different types of two-dimensional roughness
(characterized by markedly different values of p/h) a
satisfactory agreement with available experimental
data may be achieved when the single collection of
values of k, b7, b5 and C' is used. This circumstance
(which, of course, may become incorrect, if the class
of the considered rough surface is expanded, the
accuracy of the experimental results is increased or
stronger requirements to the agreement of experiments
with a theory are used) considerably simplifies the
practical application of the recommended heat- and
mass-transfer law.

(8)

Ch

3. COMPARISON WITH EXPERIMENTS

The comparison of equation (8) with available data
on turbulent heat and mass transfer at walls with two-
dimensional roughness is possible only when the
numerical parameters k, b1, b3 and C’ are determined.
The most simple, though rather crude and indirect,
method of determining the values of the above par-
ameters is based on the treatment of experimental
data on the coefficient ¢;. The data at very high Pr
numbers are essentially valuable in this respect, because
at Pr »1 the term proportional to Pr?3 is the most
important in the denominator of the RHS of equation
(8). The formula for ¢, can therefore be approximately
rewritten in a more simple form

cn = (7)) Th*Prm 20 (c/2)1? ©9)

with only two unknown parameters k and b7. Recently,
Dawson and Trass [ 14] have measured electrochemical
mass transfer between a metal solid wall with two-
dimensional roughness and turbulent flow of an elec-
trolyte flowing along the wall. They have obtained in
these experiments the values of ¢, for Pr between 390
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and 4590. According to the data of Dawson and Trass
the single value k = 1/4 can be used as the first approxi-
mation to k for all types of roughness considered in
[14]. (The ratio p/h varied in the measurements by
Dawson and Trass in the interval 3.6 < p/h < 7.5, but
it will be seen later that the same approximate value
of k has, in fact, still wider application.) Moreover, the
same data allow approximate estimation of b7 and the
value of this coefficient also turns out to be rather
insensitive to the replacement of one rough surface by
another. Finally, Dawson and Trass’s data confirm
excellently the correctness of the exponent at Pr in
equations (7) and (8). If in these equations Pr*/® is
replaced by Pr¥* (such a replacement corresponds to
the assumption that ey (y) ~ y*, rather than eg(y) ~ 3,
near a solid wall), then the data of [14] fail to correlate
(8) whatever the values of k, b7, b3 and (' are.

When the values of k and b} are estimated based
on heat- and mass-transfer data at Pr >» 1, the par-
ameters b5 and C’ may be estimated approximately by
the measurements of heat transfer through air {at
Pr=0.71). However, such an approach will not be
used here, and even the values of k and b will
repeatedly be estimated below in another way. The
case is that the knowledge of k, b1, b5 and C” is, in fact,
necessary only to find the equation for the coefficient
¢y. Therefore it is very alluring to determine these values
independently from any data directly related to heat
and mass transfer and then to use the experimental
values of ¢, to control the parameters estimated above.
The most direct method of determining the above
parameters is based on the comparison of equation (7)
with experimental values of f derived from the measure-
ments of the mean temperature and concentration
distributions in rough-wall turbulent flows along a
wall covered with two-dimensional roughness (and
simultaneous measurements of turbulent fluxes allow-
ing determination of 6.. Unfortunately the reliable
experimental data of such a type remain very scanty
and incomplete up to now. Among the known data
only some of Chamberlain’s measurements [ 15] proved
to be suitable for approximate determination of the
coefficient § in the flow along a wall with two-
dimensional roughness. In [15] the concentrations of
water vapour (Pr = 0.62) and ThB radioactive vapour
(Pr = 2.77) were measured in a number of turbulent
air flows over rough walls of different kinds. Data of
this paper include the values of u. and j, and of the
dimensionless velocity and dimensionless concen-
tration [6,.—6(y)]/6. of water and ThB vapours at the
point within the logarithmic layer (at the height
y = 5cm over the wall). It is clear that these data
allow easy determination of the experimental values
B of the constant

B =pB+alnh, = [08,—0(»)]/0.—aln(y/h)

(cf. [6]).

Only those data of [15] are used in the present paper
that are related to two-dimensional roughness (con-
sisting of parallel cylinders, half-cylinders or wavelike
ridges placed on a plate with p/h in the range

(10)
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2 < p/h < 10). Additionally, the mass-transfer data of
Owen and Thomson [13] for two-dimensional rough-
ness are also used for the indirect estimation of . In
[13] the vertical transport of camphor through an air
boundary layer is studied (Pr = 3.2). The boundary
layer is formed along two rough plates (the roughness
of one of them being “two-dimensional”) sprinkled
with camphor solution. There are no direct data on
camphor concentration profiles in [ 13] but the authors
suggest an indirect method of estimation of the dimen-
sionless vertical concentration difference B~! within
the roughness sublayer. The obtained estimates of
B~ within the roughness sublayer. The obtained esti:
mates of B™' imply approximate evaluation of f§
(cf. [6]). As it is seen from .Fig. 1 all the estimates of
f obtained from the data of [13] and [15] for two-
dimensional roughness are described with sufficient
accuracy by the equation

f=B+alnh, = 32hV4Pr*R +03)+3.5. (11

75
&
o
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Frc. 1. Comparison of measured values Bmoff = B+alnh,
with calculated values f,. Dark and light symbols refer to
the data of [15] for Pr = 0.62 and Pr = 2.77, respectively.

Range Type of
No. Reference  of i roughness Pr
1 [13] 218-896  Two-dimensional
roughness 32
2 [15] 13-3740 Cylinders 0.62;2.77
3 [15] 450-3390 Half-cylinders 0.62; 2,77
4 15} 51-3230 Wavelike ridges  0.62;2.77

Equation (11} accurately fits general equation (7) and
shows that k = 1/4, b =32, b} =03 and C' =35
Since at present there are no more reliable estimates,
these values of k, b7, b3 and C’ are used throughout
the present paper. Let us also remind that it has already
been noted in [6] that the value of C’ should appar-
ently be relatively close to the value of the constant
B in the logarithmic velocity profile equation for a
rough-wall flow: U(y)/u.= Aln(y/h)+ B. The above
value 3.5 of C’ is substantially lower than the value
C’ = 9.5suggested in [6] for a wall covered with closely
spaced three-dimensional roughness. This agrees with

the fact that according to Nikuradse B’ = 8.5 in the
logarithmic velocity profile equation for a wall covered
with closely spaced three-dimensional homogeneous
sand roughness (cf. [8], Section 5.4) while for a wall
with two-dimensional roughness the same constant B’
takes lower values in the range 3 < B’ < 8 (see [10, 14]).

Let us now compare equation (8) with the values of
k, b}, b3 and C' chosen according to (11) with the
available data on heat and mass transfer at the wall
covered with two-dimensional roughness. When the
heat transfer in a boundary-layer flow on a flat plate
is studied, it is reasonable to replace the boundary-
layer thickness L in equation (8) by more easily
measured distance x along the plate from the point of
boundary-layer turbulization to the considered cross
section of the layer. (In case of substantial roughness
x may often be rather precisely identified with the
distance from the leading edge of the plate.) Using the
known relationship L = a{c,/2)"*x where a = const
(see, e.g. [8], Section 5.6) which holds for smooth and
for rough plates, and assuming (in accordance with the
smooth-wall data) that a = 0.3, we obtain, by substitu-
tion of the above values of o, By, k, b1, b3 and (' in
equation (8) and replacement of L by x, the following
form of a heat-transfer law:

(/)

2121n Gl‘- (c,/2)1/2> + 32K (PP 403) 435

(12)

Cp=

where A = (hU,/v}(c;/2)!"%. For heat transfer into the
air (Pr=0.71) this law assumes particularly simple
form:

Rey(cs/2)M?
3 111(%((3]/2)”2)'*‘ 5{(h+)1/4+ 1]

Nu, = cyRe, Pr~

13

Numerous experimental data on heat transfer be-
tween a hot plate covered with two-dimensional rough-
ness and air flow along the plate may be found in
[16,17]. These data cover a wide range of shapes,
area distributions and heights of roughness ridges. The
authors of [16, 17] measured (as it is usually done in
boundary-layer heat-transfer studies) the mean velocity
and temperature profiles for a number of boundary-
layer cross sections along the plate, and then they
calculated the values of ¢, and ¢, by an integral
method. This method implies differentiation of the
experimental data over x, that leads to a considerable
loss of accuracy. Perhaps this is exactly the explanation
why the experimental values of Nu, numbers for a
smooth plate obtained in [16] and plotted in Fig, 2
are in poor agreement with the values calculated by
the theoretical equation for Nu, derived in [5]. Never-
theless Fig. 2 shows that the agreement between the
experimental values of Nu, and the values calculated
with the aid of (13) proves to be more or less satis-
factory for both rough plates studied in [16]. As to
the data of [17] they may be compared more reliably
with the results implied by equation (13). The reason
is that in [17] a table is given of the measured values
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FiG. 2. Nu, as a function of Re, according to data of [16]

{dotted lines) and according to proposed theoretical equation

(solid lines) at Pr = 0.71 for smooth (1) and two rough plates:

(2) plate with A = 3mm (h, ranging from 393 to 570) and

p/h = 4.16; (3) plate with h = 1.7mm (h. ranging from 256
to 303) and p/h = 7.35.

of the enthalpy thickness of the boundary layer
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with two-dimensional roughness. We must take into
account, however, that all the experimental data on
heat and mass transfer in turbulent pipe flows concern
the heat (or mass) transfer coefficient related to the
bulk velocity U, and the bulk temperature {or concen-
tration) 8, and not to the axial velocity U; and the
axial temperature (or concentration) ;. The ise of U,
instead of U, changes nothing in our considerations
since the velocity scale U may be chosen arbitrarily
in the derivation of equation (4) for ¢, (provided the
same scale U is used in dimensionless combinations
¢y, ¢y and Re). Hence we can simply replace U, by U,
in all the equations defining ¢, ¢, and Re. However
the use of 8, (ie. of the difference 8,,~0, and not of
0..—0y) is essential to the derivation of (4), and therefore
the replacement of 6, = (L) by the bulk value

2 i
g =
? U,,LZL

in the definition of the heat- (or mass-) transfer coef-
ficient requires insertion of an additional factor
A ' ={0,—0,)/f.~0,) in the equation for C,. An
approximate estimation of this factor for rough pipes
is considered in detail in [6] and we shall not dwell
upon it here. The use of the equation for A™! derived

{(L—y)0()U(y)dy

in [6] and of the above values of «, f5, k. b7, b3 and C’
implies the following transformation of (8)

fw 2312

J {es/2) (14)

Gy

- cpp Ul —6) N

32
32hY4Pri3403)—~2.121ny, +4 T

L 6.7(c 2
n1y o

where ¢, = 2(u/Uy)%, 1 = h/L. In case of heat transfer into air (Pr = 0.71) the latter equation will take the form

Nu=CyRePr=x

Re(c,/2)'12

and of the energy thickness

Ba U ; U 2
53:j (3)[1_( (y)> ]dy
e {/’1 124
at different x {beginning from x = 200 mm). If we cal-
culate the distribution of ¢, along the plate by equation
(13) and use the measured values of ¢, = ¢,{x) (given

in [17]), we may then determine A,(x) with the aid of
integral relation

x 72
Ax(x) = A5(200) + f [c,,—}——u—i«géi]dx

200 2Cp61 dx
and compare these values with the measured values of
A(x). The use of integration instead of differentiation
over x makes this comparison more reliable than the
one whose results are presented in Fig. 2. The data
in Fig. 3 show quite a satisfactory agreement between
measured and predicted values of A, related to the
experiments described in [17].

Now we shall compare the results of calculation

with the aid of (8) with the data available on heat and
mass transfer in pipes and channels with walls covered

45 '
ShY4—31nn, +5.6 ——— +9.5(c /)12

(15}
(1—??1}2

We must also take into consideration that equations
(14) and (15) refer only to pipes with a completely
rough wall. However, two-dimensional roughness
differs from closely spaced three-dimensional rough-
ness by earlier transition to a completely rough flow.
It is known that the wall covered with sand or similar
three-dimensional roughness can be considered
dynamically completely rough only at hy = hu,v
exceeding the “threshold” value AY where A x 100.
At the same time the friction data of [10, 14] show that
for two-dimensional roughness the skin-friction coef-
ficient ¢, assumes a constant value (i.e. the wall is com-
pletely rough) even when A is between 25 and 35. As
to the heat and mass transfer, transition to “com-
pletely rough flow” described by equation (14) pro-
ceeds apparently still earlier {i.e. at lower values of &, ).
This fact is clearly seen in the graphs representing
Dawson and Trass’s data [14] on mass transfer at a
rough wall for very large Pr (Figs. 10-16): most of
them show a sharp change of the slope in the Nu vs Re
curve at relatively low values of h. (most frequently
close to 10) and above this bend point equation (14}
turns to be applicable with quite a satisfactory accu-
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500 1000
X, mm

F1G. 3. A, vs x for six rough plates according

to data of [17] (points) and according to

calculations (solid lines). Pr = 0.71; six zeros

on the ordinate axis show the origin of values
for six curves.

h
No. (mm) Range of h. p/h
1 3 307-540 2.65
2 3 363-583 330
3 1.9 263-320 421
4 24 318465 4.13
5 4 538-840 4,18
6 4 563-825 4.18

racy. Since the main variation of the temperature (or
concentration) takes place at large Pr in a very thin
wall-adjacent layer, whose thickness decreases with
increase of Pr, it may be supposed that the equation
for B(Pr, h..) describing a “completely rough flow” may
be generally applied beginning from the “threshold
value” hy = h'?, where h? depends on Pr and de-
creases with increasing Pr. At present, however, there
are no data that would allow a detailed study of the
problem on the boundary between a “completely
rough flow conditions” and “transitional flow condi-
tions” and on the heat- (or mass-) transfer properties
of such “transitional flows”. Therefore we shall simply
take into account that if the true roughness height h
(that does not consider the possibility of a great differ-
ence in shapes of roughness elements) is replaced by
the height h; of equivalent (ie. causing the same
friction at rather large Re sand roughness), then the
bend in the Dawson and Trass’s curves Nu = Nu(Re)
in all cases takes place at hy4+ = hyu./v close to 25.
Since for all other experimental data analysed in this
paper the value of h{% = 25 also turns out to be a
reasonable estimate of the “threshold value” of h.
controlling the transition to “completely rough flow
conditions”, equations (14) and (15) will be applied
only at hg+ = 25. The Reynolds number corresponding

to hy+ = 25 is shown with a vertical dotted line in all
of the following figures. For the measurements at
hs+ < 25 the simplest method of linear interpolation is
used which is based on the replacement of B(Pr, hy)
in equation (4) for ¢; by the following interpolation
value

hs+ hs+

B=c bt (1 o )ﬁs. (16)
Here f, is given by equation (5) while g, is given by (7)
with k=1/4, b1=32, b5=03 and C'=35 (cf a
similar reasoning in [6] where it is, however, assumed
that #{¥ = 100). Transition from c, to C, upon deter-
mination of § and in the case of transitional flow re-
quires only insertion of an additional factor A™!
(whose value is given in [6]) into the equation for a
heat- and mass-transfer coefficient.

Figure 4 shows that equation (15) describes quite
satisfactorily (and much better than the equation for
Cy suggested in [6]) Nunner’s experimental data [9]
for pipes with walls roughened by removable circum-
ferential rings of different shapes. Let us note, however,
that in the case of heat transfer into the air satisfactory
agreement with experimental data can also be achieved
based on some theoretical models quite different from
the one used in the present work (cf. e.g. the models

—T T
10*—
10’
=}
2 -
X
|02'—
B |
B 5 2
33
L. 4
o2
-7
0 I Lot | L1
10° 10* 10

Re

F1G. 4. kNu (where factor k is included in order to avoid

overlapping of data points) vs Re according to data'of [9]

at Pr=0.71. Solid lines for rough pipes represent calcu-
lations with the aid of equation (15)

Range of Range of
No. n ha hs+ p/h k
1 0 0 0 — 1
2 0.182 26.4-701 18.3-486 13.5 2
3 0.167 44.8-1157 189-4883 6.2 4
4 0.164 42.0-1210 239-6900 5.7 8
5 0.162 34.0-1046 137-4213 7.0 16
6 0.0805 14.9-402 69.9-1890 6.2 32
7 0.0805 12.2-316 38.6-1003 73 64
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of Galin [18] and Migai [19] who supposed that the
structure of the viscous sublayer in the gaps between
the ridges of closely spaced two-dimensional roughness
does not differ considerably from that on a smooth
wall). Nevertheless, it seems that in the case of heat
transfer into the air the above equation (15) also leads
to somewhat better agreement with experimental data
than all of the equations for C, suggested in the
literature we have seen. However, only the comparison
of the above equation with experimental data covering
a wide range of Pr numbers and a great number of
roughnesses of different types may provide a decisive
verification of this equation.

In this respect the references [20-22] are of con-
siderable interest. These works describe the results of
a study of heat transfer in pipes with two-dimensional
roughness of a special kind, namely, with transverse
annular protrusions made by pressing the pipe wall
from the outside with a special roll. Engineering
advantages of utilizing such a roughness to enhance
heat transfer are discussed in detail in book [1]. The
results of [20-22] refer to a series of Prandtl numbers,
since the data include the heat-transfer coefficients for
air [20], water [21], and pure water and aqueous
glycerine solution [22] flows. The comparison of the
measured Nu numbers with the values calculated by
(14) [or with similar equation for transitional flows
based on relation (16)] is shown in Figs. 5-7. In
calculation of the Nu numbers in Figs. 6 and 7, tem-
perature dependent Prandtl numbers for water and
glycerine solutions were taken for the mean tempera-

10 T T T {
r_ —
3 10°- ~
L J
-1
0-2
— ' (4 A*3 —
o-4
v-5
102 | | [ L
104 10°

Re

F1G. 5. kNu vs Re according to data of [20]. Pr=0.71;
solid lines correspond to equation (15).

Range of Range of
No. m h. hot p/h k
1 0.119 181-753 18.0-75.0 25 1
2 0.04 46.9-328 270-1886 8.4 2
3 0.04 47.5-333 286-2002 12.0 4
4 0.04 38.7-271 107-748 16.7 8
S 0.04 29.7-208 16.5-116 333 16

10°

kNu

10% 10>

Re

F1G. 6. kNuvs Re,and Nuvs Prat Re = 1.3- 10*(insertion at
the lower right corner) according to data of [21]. Solid lines
are calculated with the aid of proposed theoretical equation.

Range of Range of
No. m hy Ao+ pih Pr k
1 0095  81.2-172 512-1083 10.6 9.8 i
2 0.095 82.7-158 426-816 15.6 8782391 2&1
3 0.095  80.3-216 351-943 20.8 6.5 4
4 0.050 216-1034 916-4377 205 3.1 1
7501
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750 r v
750 500250 b
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Num

F1G. 7. Comparison of measured values Nu,, with calculated
values Nu, for the data of [22].

Range of Range of
No. M hy hys p/h Pr
1 0 0 0 — 10-43
2 0.078 42.6-339 106-842 30 3-28
3 0.054 12.1-123 4,5-46.0 37 4-21
4 0.034 7.6-91.5 5.2-79.7 13 2-32
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ture 8y = (8.+8,)/2. To plot together all the data of
Kalinin and Yarkho [22] for a wide range of Pr
numbers in Fig. 7, the “comparison chart” was used
with measured Nu,, values on the abscissa and cal-
culated Nu. numbers on the ordinate. In Figs. 6 and 7
the scatter of points indicates somewhat worse agree-
ment between measured and calculated Nu numbers
than in the case of heat transfer through air. This fact
may, in particular, be attributed to disregard of non-
uniform temperature distribution over roughness
ridges which is apparently of importance for water
and aqueous solution flows along a rough wall. Never-
theless even in cases shown in Figs. 6 and 7 the
agreement between the measurements and calculations
is rather satisfactory from an engineering point of view.

The related two-dimensional “repeated-rib” rough-
ness consisting of annular protrusions of rectangular
profile was used by Webb, Eckert and Goldstein [10]
who studied heat transfer between pipe walls and
turbulent flow of air, water or butyl alcohol (at 0.7 €
Pr < 37). Figure 8 shows that in this case, too, experi-

F16. 8. kNu vs Re according to data of [10]. Solid lines are
calculated with the aid of proposed theoretical equation,

1 2 3 4
Pr 071 49 209 35
(a) By 0 o 0 0
m=0 hyx 0 0 [ 0
(b) hy 70-119 78-976  11.1-528 6.6-42.5
71 =002 By 43.9-748 49.0-616 69.8--333 41.4-268
p/h=10
(<) hy 17.6-303 22.0-150 18.4-234 18.2-110
7y =004 hyo 154-2641  191-1308  160-2040  158-95§
p/h =10
) Ay 47.7-858 48.9-587 48.9-587 -
7 =008 Bes 429-7709  439-527t1  439-5271 —
pih =10
(e) by 15.9-279 17.8-234 15.0-218 -
n = 0.04 hys 839-1476  94.1-1238  79.6-1153 —
plh =20
lid] ha 13.9-268 14.5~108 11.8-163 11.6-77.0
7 =0.04 hys 28.0-542 29.3-219 23.9-329 23.5-156
p/h =40

mental data agree satisfactorily with calculations based
on equations suggested in the present paper.

It has already been noted that high Prandtl numbers
in Dawson and Trasss studies [14] are of special
interest. These authors have electrochemically
measured mass transfer at a rough (and, to compare
with, at a smooth) upper wall of a rectanguiar channel
at very high Pr numbers (390 < Pr < 4585). A series
of rough surfaces with geometrically similar two-
dimensional protrusions of different height have been
used in this study and in addition to the mass-transfer
coefficient ¢, the skin friction coefficient ¢, has also
been measured. When analysing Dawson and Trass’s
data it should be remembered that, strictly speaking,
equation (14) derived for a circular pipe flow is not
applicable to the flow in a rectangular channel with
only one rough wall. However, at very large Prandtl
numbers the mean concentration 6(y) changes sharply
in a very thin layer adjacent to the wall, and then
remains almost constant. Therefore 6, in Dawson and
Trass’s experiments does not practically differ from the
maximum concentration 6, at the channel center
{though both 8, and 8, differ greatly from 6,,). Hence,
the correcting factor A~ = (0,,—8,)/0..— ) is very
close to unity and its deviation from the value of A™!
(that is also very close to unity) in case of a circular
pipe flow at the same Pr is of no real significance. In
other words, inaccuracy of equation (14) in case of a
rectangular channel flow due to the use of the factor
A~! calculated for a circular pipe appears to be quite
negligible at Pr > 390. A crude estimate of a possible
order of the magnitude of the corresponding error
shows that this error lies far beyond the limits of
accuracy of the calculation method recommended in
the present paper. Therefore in Figs. 9-16 the data of
[14] are compared with the calculations by (14) and
{16). This comparison shows that agreement between
the measured and calculated values, both for a smooth
wall and for all completely rough walls, proves to be
quite satisfactory according to Dawson and Trass’s
data. Let us note that a good agreement in a smooth-
wall case is of special interest since it demonstrates
most clearly the correctness of the exponent at Pr in
the equation for B. As far as transitional flows along
a slightly rough wall are considered, the agreement
seems to be more poor in a number of cases, which
apparently indicates insufficient accuracy of a fixed
“threshold value” h{% = 25 and of the simplest linear
interpolation between smooth and completely rough
wall flows.

Figures 2-16 show that the method of calculations
suggested in the present paper allows prediction, with
a satisfactory accuracy, of the values of heat- and mass-
transfer coefficients for a great variety of turbulent
flows along the walls covered with different two-
dimensional roughness. In particular, the method
proves to be applicable within a wide range of p/h
values (from p/h ~ 4 to p/h =~ 40), Re (from 3-10° to
2-10°), Pr (from 0.7 to 4585) and h.. (from 10 to 4000).
It should also be emphasized that the results of the
paper imply that the effect of roughness plays the
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1o®

10®

kNu

R
10° 10* 1o*
Re

i I

F16. 15. The same as in Fig. 10, but according to data for
plate R6 (n, = 0.008; p/h = 3.75).

Range of Range of
No. Pr he Hes k
i 393 30.1-2.2 46.9-3.4 i
2 464 279-20 43.5-3.2 2
3 556 25.7-19 40.0-2.9 4
4 670 23.6-1.7 36.8-2.7 8
5 8i4 21.6-16 33.7-24 16
6 1004 19.6-1.6 305-24 32
7 1246 17.7-14 27.6-2.2 64
8 1847 14.6-1.2 22.7-1.8 128
g 2858 11.7-09 18.3-14 256
10 4585 3.3-0.7 14.4-1.1 512

double role in heat and mass transfer. On the one
hand, disturbances produced by roughness ridges in-
tensify heat and mass transfer; on the other, flow
deceleration in the gaps between ridges deteriorates
heat and mass transfer. The second effect is especially
pronounced at large Pr and Re values and it can even
make the rate of heat and mass transfer from a rough
wall lower than that from a smooth wall at the same
Pr and Re numbers. It is clear that at very large Pr
and Re numbers the first term in the denominator of
the RHS of (15) is dominating, and thus {c), ~
Re™14pr=2/3 (because ¢, = const and h. ~ Re), while
for a smooth wall the first term of equation {5) for § is
dominating and therefore (cy); ~ fc)"2Pr~ %3, Hence
it follows that {c;); ~ Re ™ 18Pr~ 23 (e, /(cp)s ~ Re™ 1®
if the known Blasius friction law is valid, The latter
result is close to the experimental result of Dawson
and Trass [14] [according to these authors (cy)./{cy)s ~
Re™ ™! at large Pr and large enough Re}.

Toxd T

10°

KNy
1

10 b

RN i i
103 104 10°
Re

i i

F1G. 16, The same as in Fig. 10, but according to data for
plate R8 {n, = 0.008; p/h = 7.5).

Range of Range of
No. Pr ha hes k
1 556 27.1-2.1 58.0-4.6 8
2 670 24.9-20 53.3-42 16
3 814 228-18 48.7-38 32
4 1004 20.6-1.6 44.2-3.5 64
5 1246 187-15 40.0-3.2 128
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TRANSFERT TURBULENT DE MASSE ET DE CHALEUR SUR UNE PAROI
RUGUEUSE A SILLONS PARALLELES

Résume—On sait que I'équation générale du coefficient de transfert thermique et massique entre une
paroi rugueuse et un fluide en écoulement turbulent peut &tre obtenue 4 'aide de considérations générales
de dimension et de similitude auxquelles s’ajoutent quelques arguments physiques. L’équation est donnée
ici dans le cas d’une paroi recouverte d’une rugosité bidimensionnelle faite d’arétes paralléles, largement
espacées et perpendiculaires a la direction de Iécoulement. Les coefficients constants de 'équation sont
estimés a partir des données disponibles sur les profils moyens de température ou de concentration, pour
les écoulement3 turbulents sur paroi 4 rugosité bidimensionnelle. Les résultats du calcul s’accordent avec
toutes les expériences sur le transfert turbulent de chaleur et de masse dans les tuyaux et les canaux
avec des sillons paralléles et réguliérement espacés, ainsi que pour les plaques ayant ce type de rugosité.

TURBULENTER WARME- UND STOFFUBERGANG AN EINER
WAND MIT PARALLELEN RAUHIGKEITSERHEBUNGEN

Zusammenfassung— Bekanntlich kann die allgemeine Gleichung fiir den Wérme (Stoff}-Ubergang zwischen
einer rauhen Wand und eciner turbulenten Fluidstrdmung mit Hilfe von Dimensions- und Aehnlichkeits-
betrachtungen unter Zuhilfenahme einiger zusétzlicher physikalischer Parameter hergeleitet werden. Fiir
den speziellen Fall einer Wand, die mit zweidimensionalen Rauhigkeiten in der Form paralleler, weit
voneinander entfernter Erhebungen, welche im rechten Winkel zur Strémungsrichtung verlaufen, wird
diese Gleichung hier abgeleitet. Aus den vorhandenen Daten der mittieren Temperatur—oder Konzen-
trationsprofile in wandturbulenten Strémungén iiber zweidimensionale Rauhigkeiten werden die
Konstanten der Gleichung angenihert ermittelt. Die Rechenergebnisse stimmen befriedigend iiberein
mit allen experimentellen Daten des turbulenten Wirme- und Stoffiibergangs in Rohren und Kanilen
mit regelmassig, sich wiederholenden paralielen Rauhigkeiten, sowie an Platten mit zweidimensionalen
Rauhigkeiten derselben Form.

TYPBVJIEHTHBIA TEIUJIO- © MACCOITEPEHOC OT CTEHKUY,
TMOKPLITOM TAPAJUIEJIBHBIMU I'PEBHSMU IMEPOXOBATOCTU

Amnoramas — O6mas dopmyna mna xosbduiMenTa TEIIO- MM MacCONepPeHoca OT LIepoXoBaTol
CTEHKHM K TYpOYNIeHTHOMY TeUeHHIO XHIKOCTH, BLITEKAIOIAN B3 aHAIM3a Pa3MEPHOCTE! H HEKOTOPBIX
J[ONOJHATEILHLIX COObpaxeHHl GA3MYECKOro Xapakrepa, KOHKPETH3HPYETCS B NIPMMEHEHHE K CITy-
Yal0 CTEHKH, IOKPHITOH IBYMEPHOM 1IEPOXOBATOCTBIO B B CPABHHTELHO PEIKAX NAPaILTe/IbHBIX
rpeGHell, nepHeHIUKYIAPHLIX HANIPABNECHHIO cpeHelt CKOPOCTH. 3HaYeHHA NOCTOAHHBIX K03 duIHen-
TOB, BXONMAIIAX B NpenaraemMyio ¢GopMyny, NpHGIHKECHHO OLECHHBAIOTCA Ha OCHOBE MMEIOLIHXCH
JaHHBIX O NpOQHNAX cpeaHell TeMnepaTyphl HIH KOHUSHTPAUHH B NPHCTEHHBIX TYpOYNeBTHBIX
TEHEHMAX HaA CTEHKOH C JBYMEPHOHM IIEpOXOBATOCTHIO. ITOJIy4eHHBIE Pe3yNbTATHL MO3BONAIOT C
YAOBNETBOPUTENLHON TOYHOCTBIO ONMCATH MHOTOYHC/ICHHbIE M3MEPEHHA TypOYyJNEHTHOTO TEMJIO- H
MacconepeHoca B Tpybax M KaHajgax cO CTEHKAMH, NOKPBITHIMH I'DeOHAMH IIEPOXOBATOCTH, H Ha
NJACTHHKAX C TAKOro XK€ THIA LIePOXOBATOCTbIO, O6TEKAEMBIX TYPOYIEHTHHIM NOTOKOM.



